You can solve this problem by two ways.
(a) Counting the number of half-lives. That is how many times the initial quantity has been reduced by half.

$$
\begin{gathered}
1 \mathrm{yr} \times \frac{365 \mathrm{~d}}{1 \mathrm{yr}} \times \frac{1 \text { half-life }}{44.5 \mathrm{~d}}=8.20 \text { half-lives } \\
0.56 \mathrm{mg} \times\left(\frac{1}{2}\right)^{8.2}=0.0019 \mathrm{mg}
\end{gathered}
$$

(b) Determining the value of k from the half-life, and then use the equation $N_{t}=N_{0} e^{-k t}$

$$
\begin{gathered}
\mathrm{k}=\frac{\ln 2}{44.5 \mathrm{~d}}=1.56 \times 10^{-2} \mathrm{~d}^{-1} \\
-k t=-1.56 \times 10^{-2} \mathrm{~d}^{-1} \times 365 \mathrm{~d}=-5.69
\end{gathered}
$$

In a sample of pure isotopic substance, the mass (m) is directly proportional to the number of atoms (N), so $m_{t}=m_{0} e^{-k t}$

$$
\mathrm{m}_{\mathrm{t}}=\mathrm{m}_{0} \mathrm{e}^{-5.69}=0.56 \mathrm{mg} \times 0.0034=0.0019 \mathrm{mg}
$$

