References

Abar, S., Theodoropoulos, G. K., Lemarinier, P., and O’Hare, G. M. (2017). Agent based modelling and simulation tools: A review of the state-of-art software. Computer Science Review, 24 (Supplement C):13–33. https://doi.org/10.1016/j.cosrev.2017.03.001

Adami, C., Schossau, J., and Hintze, A. (2016). Evolutionary game theory using agent-based methods. Physics of Life Reviews, 19:1–26. https://doi.org/10.1016/j.plrev.2016.08.015

Aydinonat, N. E. (2007). Models, conjectures and exploration: an analysis of Schelling’s checkerboard model of residential segregation. Journal of Economic Methodology, 14(4):429–454. https://doi.org/10.1080/13501780701718680

Bakshy, E. and Wilensky, U. (2007). NetLogo-Mathematica link. Software. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/mathematica.html

Benaïm, M. and Weibull, J.W. (2003). Deterministic approximation of stochastic evolution in games. Econometrica, 71:873–903. https://doi.org/10.1111/1468-0262.00429

Biggs, M. B. and Papin, J. A. (2013). Novel multiscale modeling tool applied to pseudomonas aeruginosa biofilm formation. PLOS ONE, 8(10). https://doi.org/10.1371/journal.pone.0078011

Binmore, K. (2007). Playing for Real: A Text on Game Theory. Oxford University Press.

Binmore, K. (2011). Rational Decisions. Princeton University Press.

Binmore, K. (2013). Sexual drift. Biological Theory, 8(2):201–208. https://doi.org/10.1007/s13752-013-0103-5

Binmore, K. and Samuelson, L. (1994). An economist’s perspective on the evolution of norms. Journal of Institutional and Theoretical Economics, 150(1):45–63. http://www.jstor.org/stable/40753015

Binmore, K., Samuelson, L., and Vaughan, R. (1995). Musical chairs: Modeling noisy evolution. Games and Economic Behavior, 11:1–35. Erratum, 21 (1997), 325. https://doi.org/10.1006/game.1995.1039

Binmore, K. and Shaked, A. (2010). Experimental economics: Where next?. Journal of Economic Behavior and Organization, 73(1):87–100. https://doi.org/10.1016/j.jebo.2008.10.019

Blume, L. E. (1997). Population games. In Arthur, W. B., Durlauf, S. N., and Lane, D. A., editors, The Economy as an Evolving Complex System II, pages 425–460. Addison-Wesley, Reading, MA. https://doi.org/10.1201/9780429496639

Boyd, R. and Richerson, P. J. (1985). Culture and the Evolutionary Process. University of Chicago Press.

Chung, K. L. (1960). Markov Chains with Stationary Transition Probabilities. Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-49686-8

Cohen, M. D., Riolo, R. L., and Axelrod, R. (1999). The emergence of social organization in the prisoner’s dilemma: How context-preservation and other factors promote cooperation. Working Paper 99-01-002, Santa Fe Institute. https://www.santafe.edu/research/results/working-papers/the-emergence-of-social-organization-in-the-prison

Cohen, M. D., Riolo, R. L., and Axelrod, R. (2001). The role of social structure in the maintenance of cooperative regimes. Rationality and Society, 13(1):5–32. https://doi.org/10.1177/104346301013001001

Colman, A. M. (1995). Game Theory and its Applications in the Social and Biological Sciences. Routledge, 2nd edition.

Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London.

Dawes, R. M. (1980). Social dilemmas. Annual Review of Psychology, 31(1):169–193. https://doi.org/10.1146/annurev.ps.31.020180.001125

Dixit, A. K. and Nalebuff, B. J. (2008). The Art of Strategy: A Game Theorist’s Guide to Success in Business and Life. W. W. Norton & Company.

Edmonds, B. (2001). The use of models – making MABS more informative. In Moss, S. and Davidsson, P., editors, Multi-Agent-Based Simulation: Second International Workshop, MABS 2000 Boston, MA, USA, 15–32. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44561-7_2

Edmonds, B. and Hales, D. (2005). Computational simulation as theoretical experiment. The Journal of Mathematical Sociology, 29(3):209–232. https://doi.org/10.1080/00222500590921283

Ellison, G. (2000). Basins of attraction, long run equilibria, and the speed of step-by-step evolution. Review of Economic Studies, 67:17–45. https://doi.org/10.1111/1467-937X.00119

Epstein, J. M. and Axtell, R. (1996). Growing Artificial Societies. Brookings Institution Press/MIT Press, Washington/Cambridge.

Fudenberg, D. and Imhof, L. A. (2008). Monotone imitation dynamics in large populations. Journal of Economic Theory, 140:229–245. https://doi.org/10.1016/j.jet.2007.08.002

Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games. MIT Press, Cambridge.

Fudenberg, D. and Tirole, J. (1991). Game Theory. MIT Press, Cambridge.

García, J. and van Veelen, M. (2016). In and out of equilibrium I: Evolution of strategies in repeated games with discounting. Journal of Economic Theory, 161:161–189. http://dx.doi.org/10.1016/j.jet.2015.11.007

García, J. and van Veelen, M. (2018). No strategy can win in the repeated prisoner’s dilemma: Linking game theory and computer simulations. Frontiers in Robotics and AI, 5:102. https://doi.org/10.3389/frobt.2018.00102

Gilbert, N. (2007). Agent-Based Models, volume 153 of Quantitative Applications in the Social Sciences. Sage Publications, London.

Gintis, H. (2009). Game Theory Evolving Game Theory Evolving: A Problem-Centered Introduction to Modeling Strategic Interaction. Princeton University Press, 2nd edition.

Gintis, H. (2013). Markov models of social dynamics: Theory and applications. ACM Trans. Intell. Syst. Technol., 4(3), Article 53. http://dx.doi.org/10.1145/2483669.2483686

Gintis, H. (2014). The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences. Princeton University Press, revised edition.

Gotts, N., Polhill, J., and Law, A. (2003). Agent-based simulation in the study of social dilemmas. Artificial Intelligence Review, 19(1):3–92. https://doi.org/10.1023/A:1022120928602

Hamill, L. and Gilbert, N. (2016). Agent-based Modelling in Economics. John Wiley & Sons, Ltd. http://dx.doi.org/10.1002/9781118945520

Hamilton, W. D. (1967). Extraordinary sex ratios. Science, 156:477–488. http://dx.doi.org/10.1126/science.156.3774.477

Harsanyi, J. C. (1967). Games with Incomplete Information Played by “Bayesian” Players. Part I. The Basic Model. Management Science, 14(3):159–182. https://doi.org/10.1287/mnsc.14.3.159

Harsanyi, J. C. (1968a). Games with Incomplete Information Played by “Bayesian” Players. Part II. Bayesian Equilibrium Points. Management Science, 14(5):320-334. https://doi.org/10.1287/mnsc.14.5.320

Harsanyi, J. C. (1968b). Games with Incomplete Information Played by “Bayesian” Players. Part III. The Basic Probability Distribution of the Game. Management Science, 14(7):486-502. https://doi.org/10.1287/mnsc.14.7.486

Hauert, C. (2002). Effects of space in 2×2 games. International Journal of Bifurcation and Chaos, 12(07):1531–1548. https://doi.org/10.1142/S0218127402005273

Hauert, C. (2006). Spatial effects in social dilemmas. Journal of Theoretical Biology, 240(4):627–636. https://doi.org/10.1016/j.jtbi.2005.10.024

Hauert, C. (2018). EvoLudo: Interactive tutorials in evolutionary games. https://wiki.evoludo.org/

Hauert, C. and Doebeli, M. (2004). Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature, 428:643–646. http://dx.doi.org/10.1038/nature02360

Head, B. (2018). NetLogo Python extension. Software. https://github.com/qiemem/PythonExtension.

Hegselmann, R. (2017). Thomas c. schelling and james m. sakoda: The intellectual, technical, and social history of a model. Journal of Artificial Societies and Social Simulation, 20(3):15. https://doi.org/10.18564/jasss.3511

Helbing, D. (1992). A mathematical model for behavioral changes by pair interactions. In Haag, G., Mueller, U., and Troitzsch, K. G., editors, Economic Evolution and Demographic Change: Formal Models in Social Sciences, pages 330–348. Springer, Berlin. https://doi.org/10.1007/978-3-642-48808-5_18

Hindersin, L., Wu, B., Traulsen, A., and García, J. (2019). Computation and simulation of
evolutionary game dynamics in finite populations. Scientific Reports, 9(1):6946. https://doi.org/10.1038/s41598-019-43102-z

Hofbauer, J. (1995). Imitation dynamics for games. Unpublished manuscript, University of Vienna.

Hofbauer, J. and Sigmund, K. (1988). Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge.

Holt, C. A. and Roth, A. E. (2004). The Nash equilibrium: A perspective. Proceedings of the National Academy of Sciences, 101(12):3999–4002. http://dx.doi.org/10.1073/pnas.0308738101

Huberman, B. A. and Glance, N. S. (1993). Evolutionary games and computer simulations. Proceedings of the National Academy of Sciences, 90:7716–7718. https://doi.org/10.1073/pnas.90.16.7716

Isaac, A. G. (2008). Simulating evolutionary games: a python-based introduction. Journal of Artificial Societies and Social Simulation, 11(3):8. http://jasss.soc.surrey.ac.uk/11/3/8.html

Izquierdo, L. R., Izquierdo, S. S., Galán, J. M., and Santos, J. I. (2009). Techniques to understand computer simulations: Markov chain analysis. Journal of Artificial Societies and Social Simulation, 12(1):6. http://jasss.soc.surrey.ac.uk/12/1/6.html

Izquierdo, L. R., Izquierdo, S. S., Galán, J. M., and Santos, J. I. (2013). Combining mathematical and simulation approaches to understand the dynamics of computer models. In Edmonds, B. and Meyer, R., editors, Simulating Social Complexity: A Handbook, chapter 11, pages 235–271. Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-540-93813-2_11. Second edition (2017) available at: https://doi.org/10.1007/978-3-319-66948-9_13 

Izquierdo, L. R., Izquierdo, S. S., and Sandholm, W. H. (2019). An introduction to ABED: Agent-based simulation of evolutionary game dynamics. Games and Economic Behavior, 118:434–462. https://doi.org/10.1016/j.geb.2019.09.014

Izquierdo, L. R., Izquierdo, S. S., and Vega-Redondo, F. (2012). Learning and evolutionary game theory. In Seel, N. M., editor, Encyclopedia of the Sciences of Learning, pages 1782–1788. Springer US, Boston, MA. https://doi.org/10.1007/978-1-4419-1428-6_576

Izquierdo, L. R. and Polhill, J. G. (2006). Is your model susceptible to floating-point errors? Journal of Artificial Societies and Social Simulation, 9(4):4. http://jasss.soc.surrey.ac.uk/9/4/4.html

Izquierdo, S. S. and Izquierdo, L. R. (2013). Stochastic approximation to understand simple simulation models. Journal of Statistical Physics, 151(1):254–276. http://dx.doi.org/10.1007/s10955-012-0654-z

Janssen, M.A. (2020). Introduction to Agent-Based Modeling: With applications to social, ecological and social-ecological systems. https://intro2abm.com

Janssen, J. and Manca, R. (2006). Applied semi-markov processes. Springer-Verlag, New York. http://dx.doi.org/10.1007/0-387-29548-8

Jaxa-Rozen, M. and Kwakkel, J. H. (2018). PyNetlogo: Linking NetLogo with Python. Journal of Artificial Societies and Social Simulation, 21(2):4. https://dx.doi.org/10.18564/jasss.3668

Karr, A. F. (1990). Markov processes. In Heyman, D. P. and Sobel, M. J. (eds.), Stochastic Models, volume 2 of Handbooks in Operations Research and Management Science, chapter 2, pages 95–123. Elsevier. https://doi.org/10.1016/S0927-0507(05)80166-5

Killingback, T. and Doebeli, M. (1996). Spatial evolutionary game theory: Hawks and doves revisited. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1374):1135–1144. https://doi.org/10.1098/rspb.1996.0166

Kosfeld, M., Droste, E., and Voorneveld, M. (2002). A myopic adjustment process leading to best reply matching. Journal of Economic Theory, 40:270–298. https://doi.org/10.1016/S0899-8256(02)00007-6

Kravari, K. and Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial Societies and Social Simulation, 18(1):11. https://doi.org/10.18564/jasss.2661

Kulkarni, V. G. (1995). Modeling and Analysis of Stochastic Systems. Chapman & Hall, Ltd., London, UK.

Kulkarni, V. G. (1999). Modeling, Analysis, Design, and Control of Stochastic Systems. Springer New York, NY. https://doi.org/10.1007/978-1-4757-3098-2

Loginov, G. (2019). Ordinal Imitative Dynamics. Unpublished manuscript. https://arxiv.org/abs/1907.04272

Lytinen, S. L. and Railsback, S. F. (2012). The evolution of agent-based simulation platforms: A review of NetLogo 5.0 and ReLogo. In Proceedings of the fourth international symposium on agent-based modeling and simulation (21st European Meeting on Cybernetics and Systems Research).

Marden, J. R. and Shamma, J. S. (2015). Game theory and distributed control. In Young, H.P. and Zamir, S., editors, Handbook of Game Theory with Economic Applications, volume 4, chapter 16, pages 861–899. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-53766-9.00016-1

Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press, Cambridge.

Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature, 246:15–18. https://doi.org/10.1038/246015a0

Mukherji, A., Rajan, V., and Slagle, J. R. (1996). Robustness of cooperation. Nature, 379(6561):125–126. http://dx.doi.org/10.1038/379125b0

Myerson, R. B. (1997). Game theory: Analysis of Conflict. Harvard University Press.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36:48–49. https://doi.org/10.1073/pnas.36.1.48

Nelson, R. R. and Winter, S. G. (1982). An Evolutionary Theory of Economic Change. Harvard University Press.

Newth, D. and Cornforth, D. (2009). Asynchronous spatial evolutionary games. Biosystems, 95(2):120–129. https://doi.org/10.1016/j.biosystems.2008.09.003

Newton, J. (2018). Evolutionary game theory: A renaissance. Games, 9(2), 31. https://doi.org/10.3390/g9020031

Nikolai, C. and Madey, G. (2009). Tools of the trade: A survey of various agent based modeling platforms. Journal of Artificial Societies and Social Simulation, 12(2):2. http://jasss.soc.surrey.ac.uk/12/2/2.html

Norris, J. R. (1997). Markov Chains. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511810633

Nowak, M. A., Bonhoeffer, S., and May, R. M. (1994a). More spatial games. International Journal of Bifurcation and Chaos, 4:33–56. https://doi.org/10.1142/S0218127494000046

Nowak, M. A., Bonhoeffer, S., and May, R. M. (1994b). Spatial games and the maintenance of cooperation. Proceedings of the National Academy of Sciences, 91:4877–4881. https://doi.org/10.1073/pnas.91.11.4877

Nowak, M. A., Bonhoeffer, S., and May, R. M. (1996). Robustness of cooperation. Nature, 379(6561):126–126. https://doi.org/10.1038/379126a0

Nowak, M. A. and May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359:826–829. http://dx.doi.org/10.1038/359826a0

Nowak, M. A. and May, R. M. (1993). The spatial dilemmas of evolution. International Journal of Bifurcation and Chaos, 3:35–78. https://doi.org/10.1142/S0218127493000040

Ohtsuki, H., Nowak, M. A., and Pacheco, J. M. (2007a). Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs. Phys. Rev. Lett., 98:108106. https://doi.org/10.1103/PhysRevLett.98.108106

Ohtsuki, H., Pacheco, J. M., and Nowak, M. A. (2007b). Evolutionary graph theory: Breaking the symmetry between interaction and replacement. Journal of Theoretical Biology, 246(4):681–694. https://doi.org/10.1016/j.jtbi.2007.01.024

Osborne, M. (2004). An Introduction to Game Theory. Oxford University Press, Oxford.

Osborne, M. J. and Rubinstein, A. (1998). Games with procedurally rational players. American Economic Review, 88:834–847. https://www.jstor.org/stable/117008

Oyama, D., Sandholm, W. H., and Tercieux, O. (2015). Sampling best response dynamics and deterministic equilibrium selection. Theoretical Economics, 10:243–281. https://doi.org/10.3982/TE1405

Perc, M. and Szolnoki, A. (2010). Coevolutionary games—a mini review. Biosystems, 99(2):109–125. https://doi.org/10.1016/j.biosystems.2009.10.003

Polhill, J. G., Izquierdo, L. R., and Gotts, N. M. (2006). What every agent-based modeller should know about floating point arithmetic. Environmental Modelling & Software, 21(3):283–309. https://doi.org/10.1016/j.envsoft.2004.10.011

Probst, D. (1999). Book review of “Evolutionary Game Theory” by Jörgen W. Weibull. Journal of Artificial Societies and Social Simulation, 2(1). http://jasss.soc.surrey.ac.uk/2/1/review3.html

Python Software Foundation (2019). Python. Software. http://www.python.org.

Quijano, N., Ocampo-Martinez, C., Barreiro-Gomez, J., Obando, G., Pantoja, A., and Mojica-Nava, E. (2017). The role of population games and evolutionary dynamics in distributed control systems: The advantages of evolutionary game theory. IEEE Control Systems Magazine, 37(1):70–97. https://doi.org/10.1109/MCS.2016.2621479

R Core Team (2019). R: A Language and Environment for Statistical Computing. Software. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.

Railsback, S., Ayllón, D., Berger, U., Grimm, V., Lytinen, S., Sheppard, C., and Thiele, J. (2017). Improving execution speed of models implemented in netlogo. Journal of Artificial Societies and Social Simulation, 20(1):3. https://doi.org/10.18564/jasss.3282

Railsback, S. F. and Grimm, V. (2011). Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press, Princeton, NJ. http://www.jstor.org/stable/j.ctt7sns7

Railsback, S. F., Lytinen, S. L., and Jackson, S. K. (2006). Agent-based simulation platforms: Review and development recommendations. Simulation, 82(9):609–623. https://doi.org/10.1177/0037549706073695

Roca, C. P., Cuesta, J. A., and Sánchez, A. (2009a). Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics. Physics of Life Reviews, 6(4):208 – 249. https://doi.org/10.1016/j.plrev.2009.08.001

Roca, C. P., Cuesta, J. A., and Sánchez, A. (2009b). Effect of spatial structure on the evolution of cooperation. Phys. Rev. E, 80:046106. https://doi.org/10.1103/PhysRevE.80.046106

Roth, G. and Sandholm, W. H. (2013). Stochastic approximations with constant step size and differential inclusions. SIAM Journal on Control and Optimization, 51:525–555. https://doi.org/10.1137/110844192

Sakoda, J. M. (1949). Minidoka: An Analysis of Changing Patterns of Social Behavior. PhD thesis, University of California.

Sakoda, J. M. (1971). The checkerboard model of social interaction. The Journal of Mathematical Sociology, 1(1):119–132. https://doi.org/10.1080/0022250X.1971.9989791

Samuelson, L. (1997). Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge.

Sandholm, W. H. (2001). Almost global convergence to p-dominant equilibrium. International Journal of Game Theory, 30:107–116. https://doi.org/10.1007/s001820100067

Sandholm, W. H. (2003). Evolution and equilibrium under inexact information. Games and Economic Behavior, 44:343–378. https://doi.org/10.1016/S0899-8256(03)00026-5

Sandholm, W. H. (2007). Simple formulas for stationary distributions and stochastically
stable states. Games and Economic Behavior, 59:154–162. https://doi.org/10.1016/j.geb.2006.07.001

Sandholm, W. H. (2009). Evolutionary game theory. In Meyers, R. A., editor, Encyclopedia of Complexity and Systems Science, pages 3176–3205. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_188-3

Sandholm, W. H. (2010). Population Games and Evolutionary Dynamics. MIT Press, Cambridge.

Sandholm, W. H., Izquierdo, S. S., and Izquierdo, L. R. (2019). Best experienced payoff dynamics and cooperation in the Centipede game. Theoretical Economics, 14: 1347–1385. https://econtheory.org/ojs/index.php/te/article/view/20191347/0

Sandholm, W. H., Izquierdo, S. S., and Izquierdo, L. R. (2020). Stability for best experienced payoff dynamics. Journal of Economic Theory, 185:104957. https://doi.org/10.1016/j.jet.2019.104957

Sandholm, W. H. and Staudigl, M. (2018). Sample path large deviations for stochastic
evolutionary game dynamics. Mathematics of Operations Research, 43(4):1348–1377. https://doi.org/10.1287/moor.2017.0908

Schelling, T. C. (1969). Models of segregation. The American Economic Review, 59(2):488–493. http://www.jstor.org/stable/1823701

Schelling, T. C. (1971). Dynamic models of segregation. The Journal of Mathematical Sociology, 1(2):143–186. https://doi.org/10.1080/0022250X.1971.9989794

Schelling, T. C. (1978). Micromotives and Macrobehavior. Norton, New York.

Schlag, K. H. (1998). Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits. Journal of Economic Theory, 78:130–156. https://doi.org/10.1006/jeth.1997.2347

Selten, R. (1965). Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Zeitschrift für die gesamte Staatswissenschaft / Journal of Institutional and Theoretical Economics, 121(2):301–324. http://www.jstor.org/stable/40748884

Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory, 4(1):25–55. https://doi.org/10.1007/BF01766400

Seri, R. (2016). Analytical approaches to agent-based models. In Secci, D. and Neumann, M., editors, Agent-Based Simulation of Organizational Behavior, chapter 13, pages 265–286. Springer International Publishing. https://doi.org/10.1007/978-3-319-18153-0_13

Sethi, R. (2000). Stability of equilibria in games with procedurally rational players. Games and Economic Behavior, 32:85–104. https://doi.org/10.1006/game.1999.0753

Sethi, R. (2019). Procedural Rationality in Repeated Games. http://dx.doi.org/10.2139/ssrn.3468993

Sklar, E. (2007). NetLogo, a multi-agent simulation environment. Artificial Life, 13(3):303–311. https://doi.org/10.1162/artl.2007.13.3.303

Szabó, G. and Tőke, C. (1998). Evolutionary prisoner’s dilemma game on a square lattice. Phys. Rev. E, 58:69–73. https://doi.org/10.1103/PhysRevE.58.69

Taylor, P. D. and Jonker, L. (1978). Evolutionarily stable strategies and game dynamics. Mathematical Biosciences, 40:145–156. https://doi.org/10.1016/0025-5564(78)90077-9

The MathWorks, Inc. (2019). Matlab. Software. Natick, Massachusetts. https://mathworks.com

Thiele, J. C. (2014). R marries NetLogo: Introduction to the RNetLogo package. Journal of Statistical Software, 58(2):1–41. http://dx.doi.org/10.18637/jss.v058.i02

Thiele, J. C. and Grimm, V. (2010). NetLogo meets R: Linking agent-based models with a toolbox for their analysis. Environmental Modelling & Software, 25(8):972–974. https://doi.org/10.1016/j.envsoft.2010.02.008

Thiele, J. C., Kurth, W., and Grimm, V. (2012a). Agent-based modelling: Tools for linking netlogo and R. Journal of Artificial Societies and Social Simulation, 15(3):8. http://dx.doi.org/10.18564/jasss.2018

Thiele, J. C., Kurth,W., and Grimm, V. (2012b). RNetLogo: An R package for running and exploring individual-based models implemented in NetLogo. Methods in Ecology and Evolution, 3(3):480–483. http://dx.doi.org/10.1111/j.2041-210X.2011.00180.x

Thiele, J. C., Kurth, W., and Grimm, V. (2014). Facilitating parameter estimation and sensitivity analysis of agent-based models: A cookbook using netlogo and R. Journal of Artificial Societies and Social Simulation, 17(3):11. http://dx.doi.org/10.18564/jasss.2503

Thomas, B. (1984). Evolutionary stability: States and strategies. Theoretical Population Biology, 26:49–67. https://doi.org/10.1016/0040-5809(84)90023-6

Traulsen, A. and Hauert, C. (2009). Stochastic evolutionary game dynamics. In Schuster, H. G., editor, Reviews of Nonlinear Dynamics and Complexity, volume 2, pages 25–61. Wiley, New York. https://doi.org/10.1002/9783527628001.ch2

Vega-Redondo, F. (2003). Economics and the Theory of Games. Cambridge University Press, Cambridge, UK.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior. Prentice-Hall, Princeton.

Wallace, C. and Young, H. P. (2015). Stochastic evolutionary game dynamics. In Young, H.P. and Zamir, S., editors, Handbook of Game Theory with Economic Applications, volume 4, chapter 6, pages 327–380. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-53766-9.00006-9

Weibull, J. W. (1995). Evolutionary Game Theory. MIT Press, Cambridge.

Wilensky, U. (1999). NetLogo. Software. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/

Wilensky, U. (2019). The NetLogo User Manual. Version 6.1.1. https://ccl.northwestern.edu/netlogo/6.1.1/docs/

Wilensky, U. and Rand, W. (2015). An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. The MIT Press. https://www.jstor.org/stable/j.ctt17kk851

Wilensky, U. and Shargel, B. (2002). Behaviorspace. Software. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/behaviorspace.html

Wilensky, U. and Stroup, W. (1999). Hubnet. Software. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/hubnet.html

Wolfram Research, Inc. (2019). Mathematica. Software. Champaign, Illinois. https://www.wolfram.com

Young, H. P. (1998). Individual Strategy and Social Structure. Princeton University Press, Princeton.

Young, H. P. (2004). Strategic Learning and Its Limits. Oxford University Press, Oxford.

License

Icon for the Creative Commons Attribution 4.0 International License

Agent-Based Evolutionary Game Dynamics by Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book