D2.4 Hydrogen Atom: Quantum Mechanical Model
If we could calculate the energy for each energy level, we could predict the emission spectrum for hydrogen. In 1926, Erwin Schrödinger applied quantum mechanics, a model that uses both wave and particle analogies to describe atomic-scale matter, to the hydrogen atom. Instead of viewing the electron as a particle, Schrödinger applied mathematics appropriate for three-dimensional stationary waves constrained by electrostatic potential (Coulomb’s-law attraction between electron and nucleus). For each wave he derived a mathematical function to describe the wave, a wave function. The wave function is typically designated by the Greek letter ψ.
Schrödinger showed that these wave functions could be used to calculate allowed energies of a hydrogen atom. The calculated energies are given by this equation:
where the proportionality constant k = 2.179 × 10−18 J, and n is a quantum number restricted to positive integer values.
In an electronic transition, an electron moves from an initial energy level, with energy Ei, to a final energy level, with energy Ef. The energy difference between the two energy levels is:
A positive ΔE means that the atom’s energy increased, corresponding to absorption of a photon: the photon’s energy has been added to the atom’s initial energy. Similarly, a negative ΔE means that the atom has lost energy through emission of a photon.
Conservation of energy requires that the energy of the photon, Ephoton = hc/λ, equals the absolute value of the energy difference, |ΔE|, for emission or absorption. The sign of ΔE indicates whether the photon was absorbed (+) or emitted (−).
Exercise: Hydrogen-Atom Electronic Transition Energy
The equation Schrödinger obtained is equivalent to the equation Rydberg used to calculate hydrogen emission lines:
This relationship shows that R∞ = k/(hc). Substituting values for k, h, and c into this equation gives R∞ = 1.097× 107 m−1, which is the same as the experimental Rydberg constant to four significant figures. That a wave model could reproduce these highly accurate energy levels was strong evidence that quantum mechanics is an appropriate atomic-level model.
Please use this form to report any inconsistencies, errors, or other things you would like to change about this page. We appreciate your comments. 🙂